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This paper reviews theoretical studies of nuclear spin-lattice relaxation we have made for
the normal state of the cuprate high-temperature superconductors YBa2Cu3O7, YBa2Cu4O8, and
La2 Sr CuO4. In the case of planar sites, we calculated the dynamic spin susceptibility within a
constraint-free theory based on the presentation of the model in terms of Hubbard operators.
The results for 63Cu, 17O, and 89Y are in good agreement with experimental data. The relaxation
(and the Knight shift) of chain Cu in YBa2Cu3O7 and YBa2Cu4O8 requires a different treatment;
our approach uses the Luttinger-liquid model. Again, good agreement with experiment is achieved.
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1. Introduction

NMR (Nuclear magnetic resonance) and NQR
(Nuclear quadrupole resonance) are still playing an
important role to understand high-temperature super-
conductors at the atomic level [1, 2]. In particular,
studies of the various nuclear relaxation times are an
essential and, quite often, indispensable tool to deci-
pher the complex behavior of the electronic systems.
Here, we will be concerned with nuclear spin-lattice
relaxation in the normal state of cuprate superconduc-
tors and especially with those cases where the time-
dependent perturbations can be expressed in terms of
fluctuating fields arising from electronic spins. In this
paper, we will review our calculation of relaxation
times performed in recent years by using some new
approaches [3 - 6].

Cuprate superconductors we are concerned with
are the compounds YBa2Cu3O7 , YBa2Cu4O8 and
La2 Sr CuO4 which are derived from antiferromag-
netic (AF) parent compounds by doping (in the case of
the Y structures) or substitution. Both processes create
electron holes in the CuO2 planes and destroy the AF
long-range order, while AF short-range order is still
present in the superconducting compounds. Hence,
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there are powerful fluctuations which can cause spin-
lattice relaxation. The hole dynamics in the AF back-
ground is perfectly described by the dynamic spin sus-
ceptibility, ( ), which depends on wave-vector, ,
and frequency, , and thus provides direct informa-
tion about the low energy excitation spectrum and its
evolution with doping.

From ( ), parameters like the spin-lattice re-
laxation rate, 1 1, can be derived. This rate is given
by the Moriya formula [7] which reads, if 1 is mea-
sured by NQR,

1

1
=

2
2 2 ¯

( ) + ( 0)

0
(1)

where 0 is the NQR frequency. The form factors,
( ), cause the differences in the temperature depen-

dence of relaxation rates of different isotopes [8, 2]
such as planar 63Cu, planar 17O and 89Y; details will
be discussed in Section 4.

Obviously, the quality of calculating 1 1 is based
on our knowledge of the imaginary part of the dy-
namic spin susceptibility, + ( 0). Several mod-
els have been employed to calculate 1 1 for the
normal state of high-temperature superconductors;
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this will briefly be discussed in Section 2 together
with our alternate approach of calculating the dy-
namic susceptibility. In the remaining sections we
will review our 1 1 calculations for planar 63Cu
in La2 Sr CuO4 and YBa2Cu3O7 and for 63Cu,
17O, and 89Y in YBa2Cu3O7. The relaxation of chain
Cu in YBa2Cu3O7 and YBa2Cu4O8 requires a differ-
ent treatment; our approach using the Luttinger-liquid
model will be discussed in Section 5.

2. The Dynamic Spin Susceptibility

Usually, calculations of the dynamic spin suscep-
tibility start from the model [9]. In the CuO2

planes, a hole resides primarily on O sites in a square
of O atoms and forms, by hybridization, a strong bond
with the central Cu2+ ion, thus producing a local sin-
glet which may move through the lattice of Cu2+ ions.

is the hopping energy of the holes and is the strong
repulsion between holes residing on the same square.

Starting from the model, the susceptibility is
usually calculated by using various methods like the
diagrammatic [10, 11], projection [12], slave-boson
[13, 14] or slave-fermion [15, 16], and the extended
Dyson representation method [17]. However, in spite
of considerable progress, all theories have some dis-
advantages which are mainly connected with the use
of either the mean-field approximation for the local
constraints of operators or the random phase approx-
imation (RPA). Therefore we calculated the dynamic
spin susceptibility [3] within a constraint-free theory
based on the presentation of the model in terms
of Hubbard operators.

Our calculation goes as follows [3]. The spin part
of the model can be modeled by a spin-1/2
Heisenberg antiferromagnet on a square lattice with a
Hamiltonian

= 0 0 + (S S
1
4

) (2)

Here, S are spin-1/2 operators at the lattice sites ,
is a measure of the AF coupling between nearest

neighbor sites , and 0 are the Hubbard operators
that create an electron with spin at site . The hop-
ping integral, , describes the motion of electrons
without causing a change in their spins. The spin and
density operators are defined as follows:

= =
1
2

= ; =

with the standard normalization 00+ +++ = 1.
Without loss of generality, we can measure all ener-
gies from the center of gravity of the band.

When investigating the thermodynamic properties
of the Heisenberg model by analytical methods, one
must keep in mind that these methods are only valid
at low temperatures if 2 , where is the
stiffness. In doped cuprates, becomes small and
the above relation does not hold at the intermediate
and high temperature range that is of most practical
interest. We therefore employed the Green’s func-
tion method [18] which is applicable at all temper-
atures; it naturally allows to comprise the hopping
term since the method uses the Lee algebra for Hub-
bard operators. In this application, two points are
worth mentioning. First, when evaluating some Hub-
bard commutators we did not reject a term which
is responsible for the spin-spin correlations between
Cu spins and, hence, becomes very important in the
case of low-dimensional spin systems such as our
two-dimensional (2D) system. Second, when dealing
with the higher-order Green’s function by using the
Kondo and Yamaji [18] decoupling scheme, we kept
the two parameter and , appearing in this scheme,
different.

Our result for the dynamic spin susceptibility be-
comes

+ ( ) = 0( ) + 4 1(1 ) ( )

1( ) + ( 2 2) ( )
(3)

where

0( ) = +

+ +
(4)

1( ) = 0( ) +
+ +

+ +
(5)

( ) =
1

+ +
(6)

0( ) denotes the dynamic susceptibility of free
holes. 1( ) has a similar meaning as the exchange
enhancement factor in the RPA, where, however, the
second term of 1( ) is equal to 1. In our theory,
this second term is due to the strong electron correla-
tions and provides the correct concentration behavior
of + ( ) at half-filling ( = 0) [19]. ( ) is a
convenient abbreviation.
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The other quantities appearing in (3 - 6) have
the following meaning. 1 2: the nearest and next-
nearest spin-spin correlation function, respectively, of
Cu spins. : number of nearest neighbors of spin .

= (2 ) 2
=1 cos . : total and kinetic en-

ergy, respectively, of holes in the absence of correla-
tions. ( + ): Fermi function of holes with =
chemical potential.

How reliable is our model? To answer the question,
we have considered the case of the 2D Heisenberg
antiferromagnet (with = 4) where numerical results
for the relevant parameters are already known. Since
now = 0, the low-energy excitations predicted by
the model are spin waves with energies . In
the limit of = 0, the self-consistent equations for
the parameters 1 2 and can be solved exactly.

We then found, among others: 1, 2, and S agree
remarkably well with those of a modified spin-wave
theory; the S value is compatible with results of
the non-linear model and the isotropic spin-wave
theory; S 1, and the internal energy = 6 1 agree
quite well with Monte Carlo data.

Having established the basic reliability of our
model, we then evaluated the AF correlation length
in a 2D Heisenberg antiferromagnet; details are given
in [3]. Our model is able to reproduce the main fea-
tures of the temperature and doping dependences of
the correlation length in both the pure Heisenberg an-
tiferromagnet (e.g. La2CuO4) and doped compounds
(e.g. La2 Sr CuO4).

3. Planar 63Cu Relaxation in La2–xSrxCuO4
and YBa2Cu3O7–y

We will now discuss the first application of the re-
sults described in Sect. 2: we will deal with the relax-
ation of planar copper in the normal state of the super-
conductors La2 Sr CuO4 and YBa2Cu3O7 [5].

In a first step, one has to calculate the one-par-
ticle excitation energy, , of holes; we used the re-
tarded Green’s functions formalism. By we denote
the number of extra holes, due to doping, per one
plane Cu2+. The result is

= 2 eff(cos + cos ) (7)

where the effective hopping integral is

eff = +
2 1

2

2 1
2 +

2
(8)

with

=
1

=
1 +

2
(9)

Equation (8) contrasts strongly with the Hubbard-
I approach [20] which corresponds to setting eff =

. Suppression of eff by the nearest-neighbor spin
correlations, 1, is easily understood because a hole
when moving through the Cu lattice retains its spin
orientation.

We like to stress that eff [see (8)] exhibits the cor-
rect doping dependence. We found that at high hole
concentrations ( 1), the width = 8 eff of the
conducting band approaches, as it should be, the
value nonint = 8 for the non-interacting case [21].
In contrast, at low doping ( 0 05), we found
that low and weakly varies with doping. Us-
ing = 0 3, which is a reasonable value for the

model [21], we obtain low 3 . This result
agrees well with Monte Carlo data based on the
model [22].

We are now ready to calculate 1 1 according
to (1). It follows from (3), that + ( 0) is strongly
peaked close to the AF wave vector = = ( ).
Therefore, we replace by in 0( 0) and

1( 0) since these functions vary weakly with
near [3]. The term ( 0), see (6), can be cal-
culated exactly, with an accuracy of the order of 2

0 .
After some calculations, one obtains

1

1
=

64 ( 4 )2

( )¯ (1 + )
2 eff 1 1

2 2
2 (10)

where = 1 2 + 1 is the AF correlation length
measured in terms of the lattice period and ( ) =
7 5+30 exp[ 3(1 2 )1 4] with the abbreviations + =
(1 + 30 2 + 4 1 ) and = 16 1 . and
are the Cu on-site and transferred hyperfine couplings,
respectively.

Since 1 1 is proportional to 2, the short-range
AF correlations between Cu spins have a strong in-
fluence on relaxation, even in doped samples. This
result is consistent with the basic idea of the nearly
antiferromagnetic Fermi liquid (NAFL) description
of high-temperature superconductors [23], where the
dynamic spin susceptibility is generally written, in
a phenomenological approach, as the superposition
of two terms, one for itinerant quasiparticles and the
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other for localized Cu2+ magnetic moments. Like-
wise, we find the influence of the hole subsystem
on 1 1 to be important. As we shall see below,
is strongly reduced with doping thus leading to the
decrease of the Cu relaxation rate.

Our model predicts a divergence of at = 0,
in disagreement with experiment. Since, according
to neutron scattering measurements in slightly doped
La2 Sr CuO4, saturates at low temperatures, we
replace by an effective correlation length:

1
eff = 1

0 + 1 (11)

This equation is different from Keimer’s empirical
formula [24] where does not reflect an influence
of the hole subsystem. However, in reality, especially
for conducting samples, the short-range order is es-
sentially modified by moving holes.

The parameter 0 is the value of eff at = 0.
Despite many attempts to interpret 0, the meaning of
this parameter is still unclear because of lack of any
exact analytical result. Therefore, in our theory, 0 is
a variational parameter whose value is obtained by
comparison with experiment.

We now fit (10) to experimental data for
La2 Sr CuO4 and YBa2Cu3O7. The value of can
be identified with in the case of La2 Sr CuO4.
For YBa2Cu3O7, we regard 0 2 as a reasonable
choice according to photoemission data. The quanti-
ties 1, 2, and were calculated. Because the tem-
perature dependence of 1 1 is mainly determined by

eff and the factor , we take for 1 and their
values at = 0. The calculated 1 values are as fol-
lows: 1( = 0 075) = 0 0884, 1(0 1) = 0 0780,
and 1(0 15) = 0 0577 for La2 Sr CuO4; 1( =
0 2) = 0 0375 for YBa2Cu3O7.

Thus, there are four parameters to be determined:
4 , , , and 0, all of which, except 0, will

be fixed by values known either from experiment or
calculations. We use 4 190 and 140 kOe/
for La1 85Sr0 15CuO4 and YBa2Cu3O7, respectively,
[27] and = 0 1 eV and = 0 3 [21]. Thus, 0 is
the only free parameter to be determined by fitting the
experimental data. Figure 1 shows the result of the fit
to the Cu relaxation rate. The high quality of the fit
is taken as evidence for the reliability of our theory.
The result is: 0( = 0 075) = 14, 0(0 1) = 9 5, and

0(0 15) = 6 5 for La2 Sr CuO4 and 0( = 0 2) = 6
for YBa2Cu3O7.

How does the correlation length influence the
relaxation rate? Figure 1 demonstrates that 1 1 in

Fig. 1. Calculated temperature and doping dependence of
the plane copper spin-lattice relaxation rate 1 1 (solid
lines) compared with experimental data for La2 Sr CuO4
([25]; open squares: = 0 075, open circles: = 0 10, full
squares: = 0 15) and YBa2Cu3O7 ([26], full circles).

La2 Sr CuO4 (for = 0 075 0 1) decreases with
increasing temperature if the temperature is suffi-
ciently high. Such a behavior is also found in the pure
Heisenberg antiferromagnet where it is attributed to
a specific temperature dependence of the AF corre-
lation length, namely exp(2 S ) [28].
However, in doped compounds, must be modi-
fied [3]:

(2 eff )
exp(2 S ) (12)

where the stiffness S itself depends on doping. Our
calculation [5] yields 2 S = 307 K and 245 K
for = 0 075 and 0.1, respectively. For optimal dop-
ing, i. e. = 0 15, however, 2 S is sufficiently
small, namely 96 K, and in YBa2Cu3O7, S is even
negligible, so that the factor 2

eff ( eff) in (10) in-
creases with increasing temperature thus determining
the increase of the Cu relaxation rate as observed ex-
perimentally.

In terms of the temperature dependence of 1 1,
our theory predicts two regimes which are governed
by the temperature dependence of the AF correlation
length eff . At low temperatures, when 0 , eff

0, 1 1 displays a Korringa-like behavior. At high
temperatures, is much smaller than 0 and eff .
Thus, according to (10) and (12), 1 1 has a tendency
to saturate at high temperatures:
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1
sat
1

( 4 )2
1

¯
( 3

0) (13)

These results agree with experiments.
Finally, the doping dependence of 1 sat

1 is de-
termined by the factor 1 . For La2 Sr CuO4

with = 0.075, 0.1, and 0.15, we get 1 =
0.025, 0.024, and 0.021, respectively. So, 1 sat

1
in La2 Sr CuO4 is almost doping independent at
high temperatures, in agreement with experiment.
In YBa2Cu3O7, 1 = 0 016 is smaller than
in La2 Sr CuO4 because the spin-spin correlation
function 1 is rapidly reduced with doping in over-
doped samples.

4. 63Cu, 17O, and 89Y Relaxation in YBa2Cu3O7

In this section, we will describe how we extended
our previous results to the calculation of 1 1 for
plane 63Cu and 17O, and for 89Y in the normal state
of YBa2Cu3O7 [6]. Experimental data for this spe-
cial compound have revealed puzzling phenomena:
the non-Korringa temperature dependence of 63(1 1)
and the nearly Korringa-like temperature dependence
of 17(1 1) and 89(1 1) [2].

This contrasting behavior had motivated Millis,
Monien, and Pines (MMP), to create the NAFL model
(mentioned above) [23] which postulates both local-
ized Cu+2 magnetic moments and free oxygen holes.
Using the concept of hyperfine form factors [8], MMP
found that AF fluctuations are dominating the 63Cu re-
laxation while long-wave fluctuations caused by free
holes are determining the 17O and 89Y relaxation. Re-
cently, the MMP model has been quantitatively elab-
orated by Zha, Barzykin, and Pines (ZBP) [29] by
taking into account incommensurate spin fluctuations
and more general hyperfine coupling possibilities.

However, in spite of considerable progress, both
theories, MMP and ZBP, have some disadvantages
which are mainly connected with their phenomeno-
logical characters. For example, in these theories the
temperature and doping dependence of the AF cor-
relation length, , which is the essential parameter
that governs the temperature and doping dependence
of 1 1, are postulated or, at best, are taken from
a comparison with experiment. Also, the MMP and
ZBP expressions for the dynamic spin susceptibility
are good approximations only for wave vectors in
the vicinity of the AF wave vector. This implies that
the MMP and ZBP theories provide reliable results

for 1 1 if is large. In YBa2Cu3O7, however, is
small, as shown by neutron scattering measurements,
and thus a more detailed theoretical analysis of NMR
data in this compound is required.

As mentioned in the Introduction, the factor
( ) + ( ) is the essential function govern-

ing spin-lattice relaxation where the form factors de-
termine the different temperature behavior of 1 1

for different nuclei; the form factors filter the fluc-
tuations at different points of the Brillouin zone.
Thus we need to calculate the quantity
( ( ) (0)) + ( ) for Cu, O, and Y.

For the applied magnetic field along the crystal
axis, which is perpendicular to the CuO2 planes, the

( )’s are given by [2]

63 ( ) = ( + 4 )2 17 ( ) = 2 2(1 + )

89 ( ) = 32 2 cos2( 2) cos2( 2)

Here, is the on-site and , and are the
transferred hyperfine coupling constants. For we
adopted the formula [2] 2 = ( 2 + 2 ) 2, where

and are the hyperfine couplings for two axes
perpendicular to .

Thus, it remains to calculate + ( 0) which
can be written as

+ ( 0) = 0 S[ 1(0) + 1(AF)] (14)

where

1(0) =
1

1(AF) =
(2 + + 1 + )
( + + )2

= 1( )[1 S ( ) S( )]
2 ( + + 1)2 ( )

Here, S = + (0 0) 2 and S( ) = + ( 0) 2
are the static spin susceptibilities, and S ( ) =

0( 0) (2 1( 0)) is the static spin susceptibility
calculated in the random phase approximation.

A numerical calculation of ( ) cannot be per-
formed because of the presence of singularities in
the denominator of (6). Instead, we calculated ( )
exactly, resulting in the expression

( ) =
( )

2 eff( sin( 2) + sin( 2) )
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=
2 sin( 2) sin( 2)

sin( 2) + sin( 2)

where ( ) is a complete elliptic integral.
We calculated the response function + ( )

in the limit 0 by using the parameters = 0 3
and 0 2 (see Sect. 3), and the value 0 = 5, which
is derived from the best fit of 1 1 to the experimental
data (see below). The other parameters, which enter
into + ( ) , were calculated, except , by using
the self-consistent equations for the parameters 1 2

and (see Sect. 2). can be derived from the exact
diagonalization of the static spin susceptibility, ED

S .
There are some important features of the response

function 2
+ ( ) in the limit 0. For ex-

ample, two kinds of excitations with (0 0) and
( ) are dominating the low-energy excitation

spectrum, consistent with the basic idea of the NAFL
model. However, we find that the (0 0) contribu-
tion in + ( ) cannot be interpreted as arising
from free holes but rather from collective excitations
including charge and spin degrees of freedom. In-
deed, if the (0 0) contribution would be due
to free holes, the response + ( 0 ) would
determine their static susceptibility, 0(0 0), that is

+ ( 0 ) 0(0 0) [29]. In contrast, (14)
tells us that + ( 0 ) is proportional to the
static susceptibility, S, of the collective excitations.
Since S cannot be represented in terms of indepen-
dent contributions of hole and spin subsystems, one
can conclude that the spin and charge degrees of free-
dom do not separate at (0 0).

Our results for the quantity are plotted in [6].
For 63Cu, 63 is large at the boundary ( ) of
the Brillouin zone, thus making these nuclei sensitive
to the AF correlations while 17 and 89 are zero. In
contrast, 17 and 89 peak at the center, (0 0),
of the zone.

Using our values, we fit (1) to experimental data.
(The factor 2 in the prefactor of the sum sign in this
formula is now absent since we are dealing with NMR
rather than NQR relaxation.) Five parameters are to
be fitted: , , , , and 0. We handle 0 as the
only free parameter and fix the other parameters by
using values known either from experiment or calcu-
lations: + 4 203 kOe/ , 4 141
kOe/ [27], 22 kOe/ [30], and 0 3
kOe/ [32].

The result of the fit is shown in Figure 2. The
simultaneous fit to all three data sets yields 0 = 4 2.

Fig. 2. Calculated temperature dependence of the relaxation
rates 63(1 1), 17(1 1) and 89(1 1) in YBa2Cu3O7 (solid
lines) compared with experimental data: Open circles from
[31], filled circles and crosses from [30].

All three fits are good, which we take as evidence
for the reliability of our theory. The value 0 provides
reasonable values for eff. For example, for = 90 K
and room temperature we found eff(90 K) = 1.73 and

eff(300 K) = 1.07. Imai et al. [33] extracted eff from
the temperature dependence of the copper nuclear
spin-spin relaxation rate, 1 2G (G refers to Gaussian
contribution), using the NAFL result 1 2G eff .
They obtained NMR

eff (90 K) 2 3 and NMR
eff (300 )

1 5 which is close to our result.
Figure 2 demonstrates that 89(1 1) nearly fol-

lows the relation 89(1 1) while 17(1 1) ex-
hibits a stronger deviation from this relation. The rea-
son for the different behavior is that the form factor
17 ( ) does not suppress completely, in contrast to
89 ( ), the contribution of the spin fluctuations near

( ) to + ( ). Since + ( ) de-
creases with increasing temperature, one expects de-
viations from the relation 17(1 1) at low tem-
peratures. On the other hand, 63(1 1) exhibits a very
different temperature behavior. This implies that the
contribution of the AF fluctuations to + ( ) for
copper nuclei is dominating in the temperature range
from 90 to 300 K.

5. Chain Cu Relaxation and Knight Shift
in YBa2Cu3O7 and YBa2Cu4O8

To calculate the Cu spin-lattice relaxation in the
Cu-O chains of cuprate superconductors requires a
different treatment since these chains present an 1D
quantum system. It is known that in 1D the Fermi-li-
quid paradigm, based on the quasi-particle picture,
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breaks down and this then leads to the anomalies
of the magnetic properties. If probed by NMR or
NQR, chains do not exhibit simple metallic behav-
ior as demonstrated, e. g., by the Cu Knight shift [34]
and 1 1 [35 - 37].

It is believed that the Luttinger-liquid approach is
most appropriate for the description of the properties
of 1D quantum systems [38]. The notion of a “Lut-
tinger liquid” was coined by Haldane [39] to describe
the universal low-energy properties of 1D quantum
systems, and to emphasize the principle difference
between the Fermi-liquid and the Luttinger-liquid pic-
ture: the latter one takes care of interactions between
the elementary excitations. Using the Luttinger liquid
concept, some qualitative analysis of the temperature
dependence of the nuclear spin-lattice relaxation in
1D systems has been done by Ren and Anderson [40]
but only that contribution to 1 1 has been considered
which is due to the scattering processes with trans-
fer momentum 2 (Kohn anomaly). However, as
shown by NMR and NQR measurements on chains
in YBa2Cu3O7 and YBa2Cu4O8, this contribution to
1 1 is small, and thus a more detailed theoretical
analysis of NMR and NQR data is required [4].

Our starting point for describing the charge and
spin dynamics in the chains of cuprate superconduc-
tors is the 1D Hubbard model [41]. The low-energy
properties in many 1D models, in particular the Hub-
bard model, can be described within the Luttinger-
liquid approach [39]. Then, the Hubbard Hamiltonian
simplifies and, in the continuum limit, reduces to the
Luttinger-Tomonaga or, in other words, to the Gaus-
sian model [40, 42]:

LT =
= 0

d
2

2 +
2

( )2

(15)

The sum runs over all charge and spin degrees of
freedom, and , respectively, and the integration
runs over a chain of length . and represent the
charge and spin velocities, respectively. In the limit
of large ( 1), where is the value of the on-
site Coulomb repulsion of electrons, these velocities
can be calculated using the Bethe-ansatz [43]

= 2 sin ( ) =
2

1 +
sin(2 )

2 (1 )
(16)

where is the concentration of extra holes, due to
doping, per Cu(1) if one assumes that all copper in the
chain are Cu2+, and the exchange coupling constant,

, is given by = 4 2 . The parameters and
describe the long-distance properties of the system. In
particular, determines the long-distance decay of
all correlation functions of the Luttinger-Tomonaga
model.

Details of the calculations are given in [4]. The
result shows that there are two channels of magnetic
relaxation, 0 and 2 F , induced by quasiparticles
with wave vectors 0 and 2 F, respectively.
So, the total relaxation rate is

1

1 NQR
= 0 + 2 F (17)

with

0 =
3 ( + 2 )2 2

4
2
S (18)

2 F =
3( + 2 cos 2 F)2 2

2 (19)

where

= lim
0

2
( + 1)

1

sin ( 2) ( )

Here, ( ) is the gamma function. is the on-site
hyperfine field and is the transferred field produced
by the nearest neighbor Cu spins. S is the static spin
susceptibility. Further details may be found in [4].

We like to stress that our calculation, for this 1D
system, also yields the spin part components of the
magnetic shift tensor:

= orb +
+ 2

S (20)

where denotes the crystal axes , , with lying
along the chains and perpendicular to the CuO2

planes; orb is the orbital contribution to the total
shift. NMR and NQR experiments [34, 35] show that
for both, YBa2Cu3O7 and YBa2Cu4O8, the hyperfine
fields are almost isotropic. We replace by the
single value .

We now will fit our expressions for the Cu mag-
netic shift and relaxation rate to experimental data.
There are seven parameters entering the equations
to be fitted: 0, and orb, where 2 0
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Fig. 3. Top: The calculated temperature dependences
of the chain Cu spin–lattice relaxation rate, (1 1)
(full lines), fitted to experimental data for YBa2Cu3O7
(closed circles, from [35]) and YBa2Cu4O8 (open circles,
from [36]). Bottom: The calculated temperature dependence
of the component of the chain Cu magnetic shift tensor
(full line) fitted to experimental data for YBa2Cu4O8 (open
squares, from [34].

is identified as the band width energy cut-off, 0.
We will fix the parameters and by us-
ing values known either from experiment or calcula-
tions. In the chains of YBa2Cu3O7, the on-site hyper-
fine field is 30 kOe/ , while the transferred
field is 55 kOe/ [8]. For the hopping inte-
gral, , and the one-site Coulomb repulsion, , we
use the values = 0 43 eV, = 5 4 eV which are
valid for the plane [44]. Given the many structural
similarities between the chains in YBa2Cu3O7 and
YBa2Cu4O8, we used the same parameters
for both compounds. The values are known from
photoemission experiments with chains: 0 6 for
YBa2Cu3O7 [45] and 0 23 for YBa2Cu4O8 [46].
Because of the double chains, each Cu in YBa2Cu4O8

has four nearest copper neighbors, hence the trans-
ferred coupling contains two contributions: a contri-
bution from copper sites within the same chain
and a second one, which is approximately /3 [47]
from copper sites of the nearest chain. Therefore, the

transferred field in YBa2Cu4O8 should be replaced
by 2 3.

The fit of (17) and (20) to the respective experimen-
tal data is given in Fig. 3 with orb and 0 as the only
free parameters. (We did not consider the tempera-
ture dependence of the Knight shift in YBa2Cu3O7

chains because they are controversial.) All three fits
are very satisfactory, which we take as evidence for
the reliability of the Luttinger-liquid picture. The best
fit yields the following parameters: 0 = 1800 K
for YBa2Cu3O7 and 0 = 3200 K, orb = 0 125%
for YBa2Cu4O8. Using now our parameters and (20),
we found a value ( = 100) = 0 41% for the
YBa2Cu3O7 chains. This result is close to the experi-
mental value of exp(100) = 0 334 0 01% [35].

A problem remains for YBa2Cu4O8. According to
Fig.3 Bottom, the experimental value of the orbital
shift at = 0 is exp

orb ( = 0) 0 24%, if we assume
the spin part of the Knight shift to be completely sup-
pressed due to proximity-induced superconductivity
in the CuO chains. This value disagrees with our fit
result, orb = 0 125%. On the other hand, (1 1)NQR

below is only slightly affected by the on–set of su-
perconductivity (see Fig. 3 top). We see two possible
explanations: (i) some fraction of the spin excitations
is not suppressed by superconductivity and, hence,
these excitations will provide a finite spin contribu-
tion to the Knight shift at = 0; (ii) at temperatures
below , the interchain interaction becomes impor-
tant and the Luttinger-liquid description breaks down.
More experiments are needed to clarify this problem.

6. Summary

We have presented some new approaches to deter-
mine the nuclear spin-lattice relaxation time, 1, in the
normal state of cuprate superconductors. One starting
point is the calculation of the dynamic spin suscep-
tibility within a constraint-free theory based on the
presentation of the model in terms of Hubbard
operators. This treatment yields results which allow
one to reproduce the main features of the tempera-
ture and doping dependences of the AF correlation
length in both the pure Heisenberg antiferromagnet
and doped compounds.

We then calculated the temperature and concentra-
tion dependence of 1 1 of the plane copper nuclei in
La2 Sr CuO4 and YBa2Cu3O7 . The predictions
fit the experimental data very well, thus yielding rea-
sonable values for parameters such as the spin-spin
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correlation function, the antiferromagnetic correla-
tion length at 0 K, and the width of the conducting
band and their dependence on doping.

The calculations were extended to determine the
temperature dependencies of 1 1 of 63Cu, 17O and
89Y in YBa2Cu3O7. The predictions fit the experimen-
tal data very well, thus yielding reasonable values for
parameters such as the antiferromagnetic correlation
length at 0 K.
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